Quicker Q-Learning in Multi-Agent Systems

نویسندگان

  • Adrian K. Agogino
  • Kagan Turner
چکیده

Multi-agent learning in Markov Decisions ProbK i s chanenging because of the presence ot two credit assignment problems: 1) How to credit an action taken at time step t for rewards received at t’ > t ; and 2 ) How to credit an action taken by agent z considering the system reward is a function of the actions of all the agents. The first credit assignment problem is typically addressed with temporal difference methods scch as Q-learning OK TD(X) The second credit assi,onment problem is typically addressed either by hand-crafting reward functions that assign proper credit to an agent, or by making certain independence assumptions about an agent’s state-space and reward function. To address both credit assignment problems simultaneously, we propose the “Q Updates with Immediate Counterfactual Rewards-learning” (QUICRlearning) designed to improve both the convergence properties and performance of Q-learning in large mulh-agent problems. Instead of assumng that an agent’s value function can be made independent of other agents, this method suppresses the impact of other agents using counterfactual rewards. Results on multl-agent grid-world problems over multiple topologies show that QUICR-learning can achieve up to thirty fold improvements in performance over both conventlonal and local Q-learning in the largest tested systems. -_ __ _ _

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage Coordination of FACTS Devices in Power Systems Using RL-Based Multi-Agent Systems

This paper describes how multi-agent system technology can be used as the underpinning platform for voltage control in power systems. In this study, some FACTS (flexible AC transmission systems) devices are properly designed to coordinate their decisions and actions in order to provide a coordinated secondary voltage control mechanism based on multi-agent theory. Each device here is modeled as ...

متن کامل

User-based Vehicle Route Guidance in Urban Networks Based on Intelligent Multi Agents Systems and the ANT-Q Algorithm

Guiding vehicles to their destination under dynamic traffic conditions is an important topic in the field of Intelligent Transportation Systems (ITS). Nowadays, many complex systems can be controlled by using multi agent systems. Adaptation with the current condition is an important feature of the agents. In this research, formulation of dynamic guidance for vehicles has been investigated based...

متن کامل

An Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources

This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...

متن کامل

Photovoltaic Microgrids Control by the Cooperative Control of Multi-Agent Systems

This paper presents a cooperative control which is applied to the secondary control of a microgrid controlled via a multi-agent scheme. Balancing power that leads to voltage and frequency stability in a microgrid is essential. The voltage and frequency regulations are limiting within the specified limits and conveying them to their nominal values. Limiting and conveying the voltage and frequenc...

متن کامل

Outsourcing or Insourcing of Transportation System Evaluation Using Intelligent Agents Approach

Nowadays, outsourcing is viewed as a trade strategy and organizations tend to adopt new strategies to achieve competitive advantages in the current world of business. focusing on main copmpetencies, and transferring most of activities to outside resources of organization( outsourcing) is one such strategy is. In this paper, we aim to decide on decision maker agent of transportation system, by a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005